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Abstract--A simple method of analysing the results of deformation experiments on synthetic two-phase 
aggregates is presented and applied to some tests on calcite-halite aggregates. The approach involves replacing 
the observed mechanical behaviour of real two-phase materials of coarse microstructure, with a phase volume 
fraction weighted mechanically equivalent representation in which each phase is assigned its own single-valued 
stress and its own single-valued strain. Such a representation can be solved for the stresses and strains in the two 
phases and the results compared with the stresses and strains as determined from the deformation microstruc- 
tures. In principle, it is then possible to constrain which of the features of the microstructure are mechanically 
significant. 

The stresses supported by the synthetic calcite-halite aggregates suggest a strong partitioning of the 
deformation into the halite at all volume fractions of calcite, and yet analysis of the halite strains from the 
deformation microstructures indicates that there is little or no strain partitioning between the phases. However, 
these conflicting results may be reconciled by using the calcite contiguous volume, rather than the actual calcite 
volume fraction, to characterize the strength of the aggregates with respect to those of their component phases. 

INTRODUCTION THE PHENOMENOLOGICAL DESCRIPTION 

SEVERAL attempts to characterize the inelastic (but non- 
brittle) mechanical properties of a two-phase aggregate 
from the mechanical properties of its component phases, 
have been published in the recent geological literature. 
These have ranged from semi-theoretical discussions of 
the constraints on the problem (Tharp 1983, Jordan 
1988, Handy 1990) to simulations of such deformation, 
both by experiment on synthetic aggregates (Price 1982, 
Jordan 1987, Ross et al. 1987) and by numerical model- 
ling (Tullis etal.  1991, Wenk etal.  1991). In these studies 
the importance of microstructural features such as phase 
continuity have been emphasized along with phase vol- 
ume fraction as controlling the relative contribution of 
each phase to the aggregate properties. However, in the 
absence of investigations into how microstructural fea- 
tures evolve with deformation, it remains unclear how 
they should be incorporated into aggregate flow laws. 

In this study, an attempt is made to utilize the mechan- 
ical data provided by deformation experiments on syn- 
thetic two-phase aggregates to identify the mechanically 
significant features of the resulting microstructures. This 
is done by seeking to match the magnitude of the strains 
in the two phases as given by a simple phenomenological 
description of the observed mechanical behaviour of the 
aggregates, with the strains given by an analysis of the 
deformation microstructures themselves. The method is 
illustrated using the results of some experiments on 
synthetic calcite-halite aggregates. 

*Present address: Aquifer Properties, British Geological Survey, 
Maclean Buildings, Crowmarsh Gifford, Wallingford, Oxfordshire 
OX10 8BB, U.K. 

The following description of two-phase flow replaces 
the observed mechanical behaviour of real two-phase 
materials with a mechanically equivalent representation 
in which each phase is assigned its own single-valued 
stress and its own single-valued strain (subsequently 
referred to as the mechanically equivalent stresses and 
strains, respectively). These stresses and strains are the 
integrated total stresses and strains experienced by the 
respective phases in the aggregate. Accordingly, they 
are associated with the aggregate as a whole and cannot 
be ascribed to any individual grain within the polycrys- 
tal. 

The description applies only where the mechanical 
properties of the aggregate can be expressed as some 
volume fraction weighted, linear combination of the 
mechanical properties of the component phases. This 
therefore excludes circumstances where a new phase, 
with mechanical properties different from the original 
components, arises during the deformation (e.g. by 
recrystallization or by some chemical interaction within 
the deforming system). More significantly, in materials 
deforming by intracrystalline slip processes, it requires 
that the heterogeneous nature of the two-phase flow be 
on a large scale in comparison with the scale of the 
inherently non-uniform deformation of crystal plasticity 
involving dislocations, i.e. that the work hardening 
behaviour of the two phases is not significantly 
influenced by strong interactions between the phases at 
the dislocation scale. If the grain size of one of the phases 
is sufficiently small, such interactions arise directly be- 
tween the inclusion phase and the dislocations in the 
matrix phase. At larger grain sizes they occur between 
the statistically necessary and geometrically necessary 
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dislocations within each phase (respectively, dislo- 
cations which produce the deformation, and dislocations 
which merely solve strain incompatibility problems at 
the grain boundaries without contributing to the defor- 
mation, Ashby 1971). Since the significance of geo- 
metric dislocations increases with increasing grain 
boundary area, the phenomenological description of 
two-phase flow given here is restricted to aggregates in 
which the grain size of both phases is large (the coarse 
microstructure approximation). Apart from this intui- 
tive argument there is no theoretical justification for the 
coarse microstructure approximation. However, it is 
widely employed in continuum models of two-phase 
deformation wherever the grain size of both phases is 
greater than a few microns (e.g. Chen & Argon 1979, 
Tullis etal. 1991), and has been shown experimentally to 
be valid in various metal alloys (Fischmeister & Karlsson 
1977). 

Geometric constraints on the description 

Geometric constraints on the mechanically equivalent 
representation may be derived from the fundamental 
stereological relation 

qOi = (Li/Lt) = (Ai/At) = (Vi/Vt), (1) 

where (Li/Lt) is the mean length fraction of the ith- 
phase on test lines through the aggregate, (Ai/At) is the 
mean areal fraction of the ith-phase on a section through 
the aggregate, and (Vi/Vt) is the volume fraction of the 
ith-phase in the aggregate (Underwood 1970). This 
relation holds independently of the orientation of the 
test lines or surfaces and also of the size, shape, orien- 
tation and distribution of the ith-phase, provided the 
measurements are obtained from statistically respresen- 
tative lines or sections or volumes. 

By resolving the total force F t into partial forces F a 
and F E acting on the a-phase and the r-phase, respect- 
ively, 

F,=F~+Fe 
= Fa(A~/A~) + Fe(AE/Ae), (2) 

where A~ and A E are the respective phase areas. Div- 
iding by the total area At and using equation (1), then 

o, = q)~o~ + q~eop (3) 

in which otis the stress acting on the aggregate, o~ and o# 
are the mechanically equivalent stresses acting on the 
respective phases, and q~a and qO# are the volume frac- 
tions of those phases. By convention the a-phase is the 
weak phase. 

Similarly, resolving the total shortening AL t in terms 
of its components in the two phases, 

ALt = ALa + AL E 

= AL=(L~o/Lao ) + ALE(LEo~LEo), (4) 

where the subscript 0 refers to the initial length. Div- 
iding by Lto and using equation (1) 

e, = ¢~e~ + ¢Eee (5) 

in which et is the engineering strain acting on the aggre- 
gate, and ea and ep are the mechanically equivalent 
engineering strains experienced by the respective 
phases. If necessary (depending on the type of mechan- 
ical data being described), strain-rates may be substi- 
tuted for the strain terms in equation (5). 

The generality of equation (1) means that equations 
(3) and (5) apply in all possible aggregate microstruc- 
tures including the limiting cases of parallel and series 
arrangements of the constituents. Furthermore, by defi- 
nition 

1 = ¢~,~ + q)#" (6)  

Constitutive constraints on the description 

The constitutive relations for the component phases, 
in terms of their mechanically equivalent stresses and 
strains are rendered here as 

oa = o~(e~) (7) 

o E = oE(ee). (8) 

Using the coarse microstructure approximation these 
constitutive relations are the same as the flow laws for 
the single-phase end-members. 

Applying the constraints 

In uniaxial form, equations (3), (5), (6), (7) and (8) 
are five equations in eight variables. In any conceivable 
two-phase problem two variables are known or pre- 
scribed, typically <Pa (or ~b#) and E 1 (o r  Or) , and so there 
are five equations in six unknowns. Hence the problem 
of fully characterizing the mechanical properties of two- 
phase aggregates of coarse microstructure, reduces to 
one of determining a sixth equation which contains no 
new variables, but which conveys new information, i.e. 
it is not merely a rearrangement of one of these 
equations and nor is it a relation involving only the two 
known variables. Suitable forms for this sixth equation 
include the constitutive relation o, = ot(e,) as a function 
of q~a, or the stress or strain partitioning between the two 
phases as a function ~0a. These equations can be deter- 
mined empirically from suitably designed experiments, 
or can be theoretically prescribed with the aid of appro- 
priate assumptions. Armed with the additional relation, 
the six equations may be solved simultaneously to yield 
the values of the six unknowns. 

A graphical representation of  the description 

By rearranging and combining equations (3), (5) and 
(6) it may be shown that 

(o  E - o t ) / ( E t -  ~E)  = ( a t  - oa) / (~ , ;~ - e , )  ( 9 )  

(see the Appendix). Equation (9) implies that on a 
stress-strain graph the tie-line connecting (oa,ea), 
(oE,e#) and (ot,et) is linear (Fig. 1). Hence, given the 
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Fig. 1. A graphical representation of the phenomenological descrip- 
tion, showing the linear tie-line connecting the stress-strain state of 

one phase with that of the other and with that of the aggregate. 

stress-strain curves of the component phases and of the 
aggregate, together with any two (from different pairs) 
of the six stress and strain variables, all the other four 
variables can be determined. By using the deformation 
microstructures to evaluate the stress or strain in one of 
the phases, this observation has been exploited to deter- 
mine the partitioning of deformation between the 
phases in a two-phase aggregate in a number of studies 
(e.g. Fischmeister & Karlsson 1977, Cho & Gurland 
1988). Again it is emphasized that the use of the stress- 
strain curves of the component phases in this way is only 
valid under the coarse microstructure approximation. 

The tie-line referred to above can never have a posi- 
tive slope, for this would require the stronger phase to 
exhibit a larger strain than the weaker one, or the 
weaker phase to support a higher stress than the stronger 
one, both of which are precluded on energetic grounds 
(see Tullis etal. 1991 for further discussion). 

onal to the die axis, indicating that the stress was not 
completely isostatic. Finally, the specimens were hot 
pressed for 5 h in the deformation apparatus, under true 
isostatic conditions at 200°C and 200 MPa confining 
pressure. The deformation experiments were conducted 
immediately following the completion of the 5 h period. 
The resulting starting material for each deformation 
experiment was a cylindrical specimen approximately 
9.5 mm in diameter and 20 mm long. The halite recrys- 
tallized during hot pressing to produce equant grains 
with a lineal intercept size of about 300 ~m, while the 
calcite remained poorly sintered and highly damaged, 
with a lineal intercept size of about 200 /~m in the 
subsequent loading direction. The porosity remaining 
after hot pressing was a function of specimen compo- 
sition; pure calcite samples had a porosity of about 13%, 
0.6 volume fraction halite samples a porosity of about 
6% and pure halite samples a porosity of about 1%. 
These porosities are slightly lower than those observed 
by Jordan (1987) in his synthetic calcite-halite aggre- 
gates. 

The experiments were conducted in compression in a 
fluid (silicone oil) medium, triaxial (axisymmetric) de- 
formation apparatus constructed, with some minor 
modifications, following a design by H. C. Heard (Rut- 
ter 1972). Specimens with halite volume fractions at 0.1 
increments in the range 0 to 1, were deformed at a 
constant displacement-rate of 0.0495 mm min-1 (corre- 
sponding to a strain-rate of approximately 4 × 10-5 s- 1 ) ,  
200 MPa confining pressure and 200°C. At least one 
experiment at each volume fraction was deformed to a 
strain of about 0.25 or more, while others were stopped 
at strains of 0.1, 0.2 and 0.3 for the microstructural 
analysis. The resulting stress-strain curves were repro- 
ducible (for specimens of given composition) to within 
+4 MPa, emphasizing the consistent nature of the start- 
ing microstructure and the reliability of the specimen 
fabrication procedure. 

EXPERIMENTAL TECHNIQUES AND METHODS 
OF ANALYSIS 

Experimental procedure 

Synthetic calcite-halite aggregates were prepared 
from Icelandic spar and analytical grade halite. Each 
phase was sieved, the halite from the 'as received' 
material and the calcite after grinding the Icelandic spar 
for a few seconds in an agate mill, to collect a grain size 
fraction of between 250 and 400/~m. The powders were 
then mixed in true volume proportions, inside the cop- 
per jackets (of 0.25 mm wall thickness) in which the 
specimens were contained during the deformation. 
Simple mechanical mixing with a spatula provided an 
adequate dispersion of the two phases through the 
aggregate (Fig. 2). The specimens were pressed in a 
double floating piston split-die at room temperature and 
at (nominally) 600 MPa. During the cold pressing a 
shape fabric developed in each of the two phases orthog- 
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Mechanical analysis 

The aim of the mechanical analysis was to use the 
observed mechanical data to determine at any time 
during the deformation the mechanically equivalent 
stresses and strains aCe, ec¢, ahl, Shl (where the subscript 
cc is used for calcite and hi for halite). To do this it was 
necessary first to find expressions for equations (7) and 
(8) and at = at(st, q~h0. Since in each experiment the 
deformation history was approximately the same, a 
description of the determined stress-strain curves suf- 
fices. To this end, the strain-stress curves, i.e. 

s . ,  = s . , ( o . , )  (10)  

ecc = ec¢(Oc~) (11) 

st = e,(a,,~hl) (12) 

were fitted with least-squares polynomials. Substituting 
equation (6) in equations (3) and (5), and equations (10) 
and (11) in equation (5) then 
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Fig. 2. A complete axial section through a sample containing 0.6 volume fraction calcite and deformed to a strain of 0.19. 
The areas of calcite are shown black and without any internal detail, while the indicated boundaries through the halite areas 
are the traced trails of calcite dust. The calcite dust trails indicate the deformation during cold pressing as well as during the 
deformation experiment.  The development of conjugate shear zones emanating from the four corners of the sample can 

clearly be seen. 

O" t = (~hlO'hl "[- (1 --  ~hl)Occ (13) 

E t ~--" ~hl[ghl(Ohl)]  -'}- (1 --  q~hl)[gcc(O'cc)], (14)  

where halite is the a-phase and calcite the fl-phase. 
Values of et and q~hl were chosen and equation (12) 
solved for Or Equations (13) and (14) were then solved 
simultaneously to yield the two unknowns crhl and a~, 
and then with these, equations (10) and (11) were solved 
for ehl and e~¢. A combined bisection and Newton- 
Raphson routine was used to solve any non-linear 
equations. 

Microstructural analys& 

In order to evaluate the results of the mechanical 
analysis it is necessary to compare the values of the 
mechanically equivalent stresses and strains determined 

from that analysis with their values as determined inde- 
pendently from the deformation microstructures. Pro- 
vided the coarse microstructure approximation is valid, 
then only one of acc, ecc, ahl and ehl is required at given 
(et, or) to constrain uniquely all the others (cf. Fig. 1). 
The aim of the microstructural analysis in this study was 
to determine the halite strain parallel to the bulk short- 
ening direction using optical thin sections of samples 
deformed to various strains. 

On inspection of the deformed microstructures it was 
discovered that during the mixing of the two powders the 
initial halite grains had been coated with a fine-grained 
(<5/~m) calcite dust (generated during the milling of the 
Icelandic spar). This dust apparently had no influence 
on the behaviour of the halite, either during sintering or 
during deformation: 

(a) the dust trails cross-cut the recrystallized halite 
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Fig. 3. Photomicrographs of a pure halite specimen doped with calcite dust (some of which is coarser than typical), which 
has been deformed to a strain of 0.16. The same field of view is visible in both micrographs. The recrystallized halite grain 
boundaries (visible in upper micrograph taken in plane polarized light) clearly cross-cut the calcite dust trails which outline 
the original halite particles (visible in the lower micrograph taken under cross polars). The base of each photomicrograph is 

1.2 ram. 
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boundaries in arbitrary fashion (Fig. 3) implying that 
they had no influence on the recrystallization of the 
halite during sintering; 

(b) there is no microstructural evidence that the dust 
either pinned, or was incorporated within, the recrystal- 
lized halite boundaries during deformation; 

(c) experiments on pure halite specimens with a dust 
fraction added are mechanically indistinguishable from 
those without such a dust fraction. 

Given these observations and the fact that the halite 
particles were initially (before cold pressing) equant, it 
was concluded that the dust trails could be used as 
passive markers for the strain experienced by the halite. 

Longitudinal thin sections of the deformed aggregates 
were cut and the entire section photographed. The dust 
trails were traced from the photographs to produce an 
image approximately 15 × 30 cm, which was digitized by 
determining the x, y co-ordinates of a number of points 
around each grain perimeter. The area and moment of 
inertia tensor of each grain was determined by line 
integration around the points characterizing its bound- 
ary (using the routine of Tough & Miles 1984, Tough 
1988), and the grain was thereby specified in orientation 
by the orientation of the principal axes of the inertia 
tensor, and in shape (aspect ratio) by the square root 
ratio of the principal values of that tensor. 

For each grain the component of strain e i (where i is 
used as a grain label) parallel to the specimen axis, is 
given by 

(1 + el) = {Ri 1/3 [(cos20i/Ri) --I- Risin20i]} -1/2, (15) 

where Ri is the aspect ratio of the grain, Oi is the angle 
between the specimen axis and the long axis of the grain, 
and constant volume, axisymmetric deformation from 
initially equant grains has been assumed (see the Appen- 
dix). For perfectly axisymmetric deformation 0 = 90 ° 
and ei = e3. However, local strain gradients due to the 
impingement of the halite grains into the stronger calcite 
grains and to specimen end effects, result in the devi- 
ation of 0 from 90 ° particularly at large (et > 0.2) strains 
(Fig. 2). The use of equation (15) is therefore under the 
assumptions that each grain deforms axisymmetrically 
and that this axis lies in the plane of the section. Any 
departure from the latter assumption will lead to an 
underestimate of strain, for the principal strain axes then 
no longer lie in the section plane. However, given that 
the entire section was analysed, that for the specimen as 
a whole 02 = 03, and that the shape orientations of the 
grains are disposed symmetrically about the specimen 
axis (i.e. axisymmetry was maintained for the whole 
sample, cf. Fig. 2), it was anticipated (and confirmed by 
the strain analyses on pure halite specimens, see below) 
that these errors are small. 

Given ei for each grain, the total halite strain parallel 
to the specimen compression direction (ehl)ob is 

(Ehl)ob : 2 (Ai/At)ei, (16) 
i 

where the summation is carried out over the entire 

number of grains in the section, Ai is the area of the ith 
grain, and A t is the total area of halite. This expression is 
derived in the same way as equation (5) but with the use 
of the stereological observation that the length fraction 
of the ith-phase on test lines (here parallel with the bulk 
compression direction and thereby indicating the axial 
strain) across a section through an aggregate, is equal to 
the areal fraction of the phase on that section (equation 
1). 

The strain imposed during the cold pressing was 
determined in this way, as a function of composition, 
from hot pressed but undeformed specimens of 0.2, 0.4, 
0.6, 0.8 and 1 volume fraction halite. This strain was 
subtracted from that given by equation (16) for the 
deformed specimens, to give the strain imposed during 
the deformation. 

By identifying the mechanically equivalent halite 
strain with the grain-size weighted sum of the strains 
experienced by each halite grain in the aggregate, it is 
implicitly assumed that the deformation of the aggregate 
is statistically homogeneous at the grain scale (or rather, 
given the use of the end-member flow laws in the rest of 
the analysis, is at least as statistically homogeneous at 
the grain scale as it is in the single-phase polycrystal). 
This assumption (the quasi-homogeneous continuum 
approximation, Gurland 1979) is justified on the basis 
that the strain heterogeneities observed across the de- 
formation microstructures are a much stronger function 
of aggregate strain than of aggregate composition. It is 
necessary because the individual grains are the smallest 
unit of the microstructure which can be identified in the 
optical microstructures. 

R E S U L T S  

Experimental 

The stress-strain curves obtained from the experi- 
ments are shown in Fig. 4. For each volume fraction, the 
stress-strain curve shown falls near the middle of the 
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Fig. 4. Calcite-halite stress-strain curves produced at the indicated 
volume fraction halite. 
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Fig. 5. Calculations of the tie-lines connecting the stress-strain states of the calcite and halite at (a) 0.6 volume fraction 
halite and (b) at 0.3 volume fraction halite. The dashed curves indicate the predicted aggregate stress-strain curves under 

the prescription that the halite strain equals that of the calcite. 

range of reproducibility results obtained at that compo- 
sition. The stress data are corrected for the load sup- 
ported by the copper jacketing material and, assuming 
constant volume, homogeneous deformation, for the 
cross-sectional area change of the specimen during the 
deformation. Microstructural examination indicated 
that at all volume fractions the halite deformed by 
intracrystalline slip processes, while the calcite de- 
formed partly by intracrystalline slip-mechanical twin- 
ning and partly by cataclasis. 

The stresses supported by the aggregates as a function 
of both aggregate strain and volume fraction halite, are 
similar to those found by Jordan in his synthetic calcite- 
halite experiments conducted under the same conditions 
(Jordan 1988). As Jordan observed, even small addi- 
tions of halite produce a large reduction in strength of 
the aggregate when compared with the strength of the 
pure calcite specimens. In all tests with halite volume 
fractions of greater than 0.2, the stress-strain curves 
become flat-topped and in several an apparent work 
softening is observed. The significance of the work 
softening is uncertain, for in repeat tests conducted on 
larger (25 mm diameter and 50 mm long) pure halite 
specimens, it was not observed. Consequently in the 
analyses which follow, the maximum stress of the stress- 
strain curve is used for all strains where apparent work 
softening was observed, although it is recognized that 
the softening may be real. 

Mechanical analysis 

Figure 5 shows the results of the mechanical analysis 
of the stress-strain curves for aggregates with halite 
volume fractions of 0.6 and 0.3. Tie-lines indicate the 
calculated mechanically equivalent stresses and strains 
in each phase as a function of aggregate strain. Also 
shown in the figure are the predicted stress-strain curves 
of the aggregate for each of the two volume fractions in 
the iso-strain case (i.e. assuming that &hi = E,, = Ed), as 

given by incrementing the value of E, and solving for the 
requisite stresses in equations (lo), (11) and (13). It is 
observed that at all volume fractions the aggregate 
stress-strain curve is significantly weaker than that pre- 
dicted if the strains in the two phases are equal, i.e. the 
strain is apparently partitioned into the halite. This 
partitioning increases with increasing volume fraction 
halite and aggregate strain (Fig. 6). If the aggregate 
stress-strain curve becomes flat-topped the calcite 
apparently stops deforming and behaves as a rigid 
stressed inclusion (an inevitable consequence of 
equation 3 given that in such circumstances the mechan- 
ically equivalent calcite stress must increase to accomp- 
lish further deformation for it is work hardening, and yet 
the other two stresses are constant). 

Microstructural analysis 

Comparison of the strains calculated from the pure 
halite microstructures with the actual strains experi- 
enced by those aggregates, shows that equation (16) 
leads to the expected (see discussion of equation 15) 
small underestimate of the axial strain (Fig. 7). This 
underestimate is of the order of a strain of 0.01, although 
at larger strains (E, > 0.25) the discrepancy becomes 
larger. It is assumed that these underestimates are no 
larger in the two-phase aggregates than they are in the 
pure halite samples for the same reason as was used to 
justify the quasi-homogeneous continuum approxi- 
mation, i.e. that the effect of increasing aggregate strain 
on the strain heterogeneities across the samples is much 
greater than the effect of increasing volume fraction 
calcite at given strain. The three points for the sample 
deformed to a strain of approximately 0.2 were obtained 
from independent tracings of the same photomosaic (by 
the authors and K. H. Brodie), and show that the strain 
underestimate is essentially independent of observer 
bias in interpretating the strain marker morphology. 

Table 1 compares the halite strains determined from 
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Fig. 6. The partitioning, as calculated from the stress-strain curves of Fig. 4, of (a) the stress and (b) the strain between the 
two phases as a function of halite volume fraction and aggregate strain. 
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Fig. 7. A comparison of the bulk specimen axial strain with the 
observed halite strain as given by equation (16) (correcting for the 
strain induced during cold pressing), for pure halite experiments. The 

indicated line is that for perfect correspondence between the two. 

Table 1. Data from the five analysed deformation 
microstructures, comparing the halite strain predicted from 
the mechanical analysis ~,,t, with that observed (E,,,),,,, ; and 
comparing the apparent calcite volume fraction, (@r&,, 
with the calcite contiguous volume, V,. The error given for 
the contiguous volume of calcite corresponds to an error of 
+20 pm on the calcite intercept size in the direction 

of loading 

0.8 0.09 0.20 0.11 0.73 0.67 + 0.01 
0.8 0.16 0.49 0.21 0.62 0.64 f 0.01 
0.4 0.10 0.16 0.10 0.13 0.15 I!I 0.02 
0.4 0.19 0.31 0.18 0.11 0.14 + 0.02 
0.2 0.18 0.22 0.18 0.02 0.02 + 0.02 
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Fig. 8. Comparison of the tie-lines connecting the stress-strain states 
of the calcite and halite at an aggregate strain of 0.1 and 0.6 volume 
fraction halite, where the calculated tie-line is that given by the 
mechanical analysis, and the observed field of tie-lines is that pre- 
scribed by the halite strains determined from the deformation micro- 
structures. The bounds on the observed field are for the halite strain as 
given by equation (16) on the assumption that the equation is accurate 
(iso-strain bound), and on the assumption that it leads to a strain 

underestimate of 0.01 (sloping bound). 

the microstructures using equation (16) with those de- 
termined from the analysis of the stress-strain curves 
(i.e. the mechanically equivalent halite strain). For a 
halite volume fraction of 0.2 there is a small partitioning 
of strain into the halite phase which is much less than 
predicted by the mechanical analysis, while for the other 
volume fractions the halite strain equals the aggregate 
strain i.e. there is no strain partitioning. The errors 
indicated in Fig. 7 for the halite strain obtained from 
the microstructures do not substantially alter this con- 
clusion. This is shown by Fig. 8, in which the tie- 
lines obtained using values of halite strain which are 
1% strain larger than the aggregate strain, are still 
much steeper than those obtained by the mechanical 
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analysis for the same halite volume fraction. Given the 
observed stress-strain curves, the geometry of the tie- 
line construction indicates that the significance of the 
errors incurred by the use of equation (16) diminishes 
with increasing aggregate strain and increasing halite 
volume fraction. 

DISCUSSION 

The observation from the calcite-halite microstruc- 
tures that there is little or no strain partitioning between 
the two phases during deformation, conflicts with the 
observation from the analysis of the mechanical results 
that the aggregate stress-strain curves are much weaker 
than predicted for the iso-strain case. In deriving the 
constraint equations for the mechanically equivalent 
representation two assumptions were made: 

(a) that the aggregate properties are some weighted, 
linear combination of the properties of the component 
phases (the coarse microstructure approximation); and 

(b) that the weighting factor is the volume fraction of 
the respective phases. 
The first assumption is considered to be valid given that 
the calcite-halite microstructures are extremely coarse. 
Hence it follows that the cause of the conflicting results 
resides in the use of volume fraction as the weighting 
factor, i.e. in the inadequacy of the geometric constraint 
equations to provide real constraints on the deformation 
behaviour. To determine the appropriate weighting fac- 
tor, the derivation of the geometric constraint equations 
was dropped, and the mechanical analysis was rewritten 
to solve for the apparent volume fractions (~a)app and 
(¢~)app given a strain partitioning function. The defor- 
mation microstructures could then be re-examined to 
determine what, if any, feature corresponded with the 
apparent volume fractions. 

Solving for apparent volume fractions 

Using apparent volume fractions equations (3) and (5) 
are 

O" t = ((~a)appO'a "{- (~,8)appOfl  (17) 

8 t = ( ~ a ) a p p g a  + ( t~fl)appe fl ( 1 8 )  

with additionally 

1 = (~Pa)app + (@fl)app (19) 

e~ = ea(et,q}~), (20) 

where equation (20) expresses the strain partitioning as 
a function of aggregate strain and the true volume 
fraction ~0 a. It is observed that since equations (17), (18) 
and (19) are of the same form as equations (3), (5) and 
(6), the linear tie-line property (equation 9) is still valid. 
Equations (10), (11) and (12) are retained (as is equation 
6 so that the two new apparent volume fraction variables 
are accommodated in the system by the two new 
equations 19 and 20). Combining the new equations, 
equations (13) and (14) become in the a/fl notation 

o.'7///// 

0- 
0.5 1 

TRUE CALCITE VOLUME FRACTION 

Fig. 9. The apparent calcite volume fraction as determined from the 
mechanical data presented in Fig. 4 under the iso-strain assumption, 
and plotted as a function of true calcite volume fraction for the 

indicated aggregate strains. 

o, = [1 - (q}fl)applO'a + (~bfl)appO" fl (21) 

e, = [1 - (q)fl)app][ga(Oa)] + (~fl)app[,gfl(Ofl)]. (22) 

Prescribing ~ba and e,, then ta is given by equation (20) 
and o~ and o, may be found from equations (10) and 
(12). Hence rearranging equation (22) for o~ and substi- 
tuting in equation (21), (~/~fl)app may be found. 

This procedure is simplified in the present case if the 
small strain partitioning observed at 0.2 volume fraction 
halite is ignored so that at all q~hl then ehl = ecc = e,. 
Equations (10), (11) and (12) may then be used to find 
Ohl, ecc and o, and these may be substituted directly into 
equation (21) to give 

(q~cc)app = (O't --  O'hl)/(O'cc - -  Ohl)" ( 2 3 )  

Figure 9 shows the apparent calcite volume fractions 
calculated from equation (23) as a function of true 
calcite volume fraction at various aggregate strains, 
given the stress-strain curves of Fig. 4. As may be 
expected from the fact that the aggregate stresses are 
weaker than predicted, the aggregates behave as though 
they contain considerably less calcite than is actually the 
case. 

Re-examination of the deformation microstructures 

The problem now becomes one of determining what, 
if any, feature of the deformation microstructure corre- 
lates with the apparent calcite volume fraction. The 
geometric constraint equations (3) and (5) take no 
account of the distribution of the phases through the 
aggregate. Hence the component stresses and strains are 
defined as if all the grains are arranged in an end-loaded, 
single-phase polycrystal. In real microstructures how- 
ever, the phases are in general, discontinuously distrib- 
uted. The stresses in the strong phase therefore reflect 
not pure end-loading, but rather an 'end-load' com- 
ponent equal to the stress in the weak phase, plus a 



Correlating mechanical data with microstructural observations 1017 

component which is due to the transfer of load from the 
weak to strong phase through the shear stresses gener- 
ated by the difference in deformation-rates across their 
shared boundaries. Hence it may be expected that the 
geometric constraint equations will contain some micro- 
structural variable which accounts specifically for the 
area of boundary shared between the two phases. Conti- 
guity provides such a variable, and for this reason a 
contiguity analysis was conducted on the five specimens 
analysed previously for the halite strain. 

Contiguity C is defined as the fraction of the total 
internal surface area of a phase that is shared by particles 
of the same phase 

C~ = 2S~/(2S~ + S~) ,  (24) 

where S ~  is the shared boundary area between r-grains 
and Sa~ is the area of interphase boundary, both per unit 
volume (Gurland 1958). By being a surface area depend- 
ent term, contiguity may be determined from intercept 
counting on a planar section through an aggregate. This 
follows from the often derived relationship 

S~  = 2P~,  (25) 

where P ~  is the number of intercepts made by shared tiff 
boundaries per unit length of test line (e.g. Underwood 
1970, pp. 31-32). Using equation (25), equation (24) 
becomes 

C~ = 4P~/ (4P~ + 2Pa~). (26) 

It may further be shown that a contiguous volume V~ is 
given by 

V~ = C~q)~ (27) 

(Gurland 1979). From the definition of contiguity, it 
follows that a given grain is not either in the contiguous 
volume or not. Rather each individual grain makes a 
grain size weighted contribution to the contiguous vol- 
ume of its phase according to the proportion of its 
surface area that it shares with other grains of like phase. 

In an aggregate in which the phases are discontinu- 
ously distributed it is the contiguous volume of the 
strong phase which is of significance for it is this which 
determines the extent to which the load transfer from 
weak to strong can occur (i.e. the potential for load 
transfer increases as strong phase contiguity decreases). 
In the calcite-halite analysis it is therefore the contigu- 
ous volume of calcite which needs to be determined. 
Unfortunately equation (26) could not be used because 
the calcite grains were so heavily damaged by the speci- 
men preparation and deformation that it was not poss- 
ible to make reliable tracings of calcite-calcite grain 
boundaries from photographs of the microstructures. 
However, the calcite grain boundaries were clearly vis- 
ible under the microscope, and so to take advantage of 
this, the equation defining the contiguity of a phase was 
re-expressed in terms of the average lineal intercept 
length d e of the phase (determinable under the micro- 
scope), the volume fraction of the phase, and the counts 
of the interphase boundaries (determinable from the 
tracings). Then 

= 1 - ( 2 8 )  

(see the Appendix). Counts of calcite-halite boundaries 
were made from the traced images of the microstruc- 
tures using linear test lines which were parallel to the 
specimen axis, and regularly spaced across the full width 
of the specimen. Between 400 and 1000 interphase 
boundaries were sampled (depending on the volume 
fraction of halite) on each tracing. The mean intercept 
size of the calcite in the same direction was estimated 
directly under the microscope, by counting intercepts 
and applying the relation 

d,~ = 2q~/(2P~/~ + Pa/~) (29) 

(see the Appendix). These counts were carried out on 
two samples which had undergone a total strain of 0.2 
and which had 0.8 and 1 volume fraction calcite, respect- 
ively. The intercept size determined was corrected for 
axial strain for use in the other microstructures. The 
error introduced here includes primarily the variability 
in the initial calcite grain size between specimens and the 
assumption that the calcite strain is accommodated en- 
tirely by a grain shape change. Both these factors must 
be rather less than the _+20/,m error introduced by the 
difficulty in determining exactly what was and what was 
not a calcite grain boundary even when viewed under the 
microscope. 

The calcite contiguous volumes determined from 
equations (28) and (27) are compared with (~¢¢)app in 
Table 1 where the apparent calcite volume fraction has 
been determined from equations (21) and (22) for the 
0.2 halite volume fraction specimens (i.e. the observed 
strain partitioning is accounted for), and from equation 
(23) for the other specimens. There is good agreement 
between the two within the errors involved. 

Interpretative comments 

The preceding analysis suggests that the mechanical 
behaviour of the calcite-halite aggregates described 
here may be accounted for by the following system of 
equations 

ot-- Cccq~ccOcc + (1 - Ccc•cc)ahl (30) 

et = Ccc¢ccecc + (1 - Cccq~cc)ehl (31) 

= Occ( cc) ( 3 2 )  

Crhl = OhL(ehl) (33) 

which are four equations in eight variables. All the 
grains of a phase are used to determine the stresses and 
strains of that phase, and the calcite contiguity, which 
accounts for the microstructure of the aggregate, is 
determined over the same domain as used to determine 
those stresses and strains (in this case the whole speci- 
men). This conclusion is dependent on the validity of the 
coarse microstructure approximation, which could in 
principle (though in these specimens, not in practice), be 
verified by determining Occ or e~c to confirm that the 
linear tie-line property (equation 9) holds. 

Equations (30) and (31) require theoretical justifi- 
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cation. Shear-lag theories seem to offer the best pros- 
pect for achieving this (cf. Gurland 1979) but no attempt 
to apply them is made here. However, some qualitative 
comments are offered. 

In the case that all the grains of the strong phase are 
arranged in a continuous framework in the loading 
direction, the strong phase contiguity is unity, and 
equations (30) and (31) reduce to the original constraint 
equations (3) and (5). In such circumstances the two- 
phase flow problem may be treated using the notion of a 
load-bearing framework (Tharp 1983). Since phase con- 
tiguity is directly and unequivocally related to phase 
continuity only at its limits of 0 and 1, this is the only 
instance in which equations (30) and (31) can be treated 
in this way. To consider the aggregate stress as com- 
posed of a part arising from the strong phase grains in the 
framework and a part arising from the rest of the 
aggregate (isolated strong phase and weak phase grains) 
requires that the isolated strong phase grains be dis- 
tinguished in microstructural analyses because they do 
not experience the same strain as the weak phase (i.e. 
the problem becomes a three-phase one). Moreover, the 
notion of a load-bearing framework may be of limited 
utility because as observed previously (e.g. Handy 1990) 
and confirmed here (Fig. 9, given the contiguity 
interpretation), such frameworks seem to break down 
(C~ < 1) at very small strains-volume fraction weak 
phase. 

In the case that all the grains of the strong phase are 
fully dispersed, the strong phase contiguity is zero and 
the aggregate stress and strain are those of the weak 
phase. In such circumstances the two-phase flow prob- 
lem becomes that of the flow of a viscous fluid containing 
rigid particles (e.g. Soo 1991). 

In all intermediate cases (0 < C~ < 1), contiguity 
analyses can provide a useful contribution to the prob- 
lem of two-phase flow in a manner in which the load- 
bearing framework and viscous fluid approaches do not 
permit. In the calcite-halite aggregates reported here 
the load transfer from the halite to the calcite results in a 
calcite stress which is greater than anticipated in the 
absence of microstructural considerations. Conse- 
quently, the calcite experiences a larger strain, and the 
strain required of the halite is decreased. Figure 9 
implies that as the deformation proceeds the calcite 
contiguity decreases, thereby permitting more load 
transfer and hence allowing the approximately iso-strain 
condition to be maintained. This microstructural evol- 
ution continues even when the aggregate is nominally 
deforming at steady-state, i.e. when the aggregate 
stress-strain curve is fiat-topped. However, the fact that 
the curves of constant strain in Fig. 9 become closer 
together as the strain increases, suggests that there is a 
limit to this process which is a function of the volume 
proportions of the two phases. Beyond this limit other 
processes not accommodated in this analysis (e.g. dy- 
namic recrystallization or diffusive mass transfer pro- 
cesses) are required if the microstructure is to evolve 
further. 

In conclusion, it seems that provided equations (30) 
and (31) are found to have general and theoretical 

validity, then contiguity analyses present a relatively 
simple means of tracing the evolution of aggregate 
mechanical properties as the relative strength of the two 
phases changes (perhaps through changes in the defor- 
mation environment) and as the deformation micro- 
structure develops. 

CONCLUSIONS 

(1) A method is presented for determining the stresses 
and strains experienced by the components of a two- 
phase aggregate of coarse microstructure using the 
stress-strain curves of the aggregate and the single- 
phase end-members. It is used to determine the strain 
experienced by the halite in some synthetic calcite- 
halite aggregates, both as a function of aggregate strain 
and as a function of calcite volume fraction. In all cases 
the aggregate stress-strain curves suggest a strong parti- 
tioning of the deformation into the halite. 

(2) The strain experienced by the halite is determined 
independently from an analysis of the deformation 
microstructures of the synthetic aggregates. In all cases 
there appears to be very little partitioning of the defor- 
mation into the halite, i.e. the halite strain is approxi- 
mately the same as that of the aggregate. 

(3) The conflicting values of halite strain given by the 
two methods may be reconciled if instead of the phase 
volume fractions, the contiguous volume of the calcite is 
used to weight the contribution of each phase to the 
aggregate properties. 

(4) The analysis provides a method for using mechan- 
ical and microstructural data simultaneously to con- 
strain the bulk flow properties of two-phase aggregates. 
It also highlights the need for contiguity analyses on 
deformation microstructures, particularly with a view to 
determining how the contiguity of the strong phase 
evolves during deformation. 
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A P P E N D I X  

Substituting equation (6) and rearranging 

(a~ - or) = (o, - oa)(1 - q¥)/~b#. (A1) 

Similarly 

( e  t - -  El3 ) -~- (ec t  - -  e , ) ( 1  - -  ~/3) /~/3 ,  (A2) 

Dividing equation (A1) by (A2) yields equation (9). 

Derivation of the strain equation (15) 

The strain e in any direction 0 given with respect to the long axis of 
the strain ellipse may be found from 

1/(1 + e) 2 = [cos20/(1 + el) 2] + [sin20/(1 + e3) 2] (A3) 

(Ramsay 1967, pp. 65-66). For constant volume axisymmetric defor- 
mation 

1 = (1 + el)2(1 + e3) (A4)  

and by definition 

R = (1 + el)/(1 + e3). (A5) 

Combining equations (A4) and (A5) 

(1 + el) =- R ~/3 and (1 + e3) = [R(1 + el)] -1/2 

which on substituting into (A3) and rearranging yields equation (15). 

Derivation of the contiguity equation (28) 

From equation (26) 

(I - C~) = p~/(2P~ + Po~). (A6)  

The mean lineal intercept length of 3 is 

d E = dp#/Na, (A7) 

where N~ is the number of 3-grains intersected per unit test line length 
(Underwood 1970, p.81). In a two-phase material 

Derivation of the tie-line equation (9) 

Rearranging equation (3) and subtracting o t from both sides 

(a~ - c,t) = (o, - ~ o , -  ~0~o~)/~. 

N~ = (2P~ + PalO/2 (AS) 

(Underwood 1970, pp.8-9). Substituting equation (A8) into equation 
(A7) yields equation (29), which substituting into equation (A6) and 
rearranging, gives equation (28). 


